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1. INTRODUCTION

The nth integrated Meyer-Konig and Zeller operator £In' n EN (see
[1 J), associates with a real valued Lebesgue integrable function f defined
on 1= [0, 1], the function series

Mn(f, x) = ~ Mnk(x) f f(t) dt,
k~O !k

converging for °::::; x < 1, with

(1.1 )

[
k k+1 J

h= n+k' n+k+ 1 '

and

kEN,

Mn(f, x) can be written as a singular integral of the type

Mn(f, x) =rHn(x, t) f(t) dt,
o

with the positive kernel

00

Hn(x, t) = L: Mnk(x)xk(t),
k~O

245

(1.2)

(1.3)
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.vhere Xk denotes the characteristic function of the interval h with respect
to I. Mn(f, x) is linear, positive, and satisfies

(1.4)

The sequence {Mn: n EN} generates a linear approximation method on the
normed spaces Lp(I), 1~ p < 00.

R. Bojanic [2] gave the rate of convergence for Fourier series of
functions of bounded variation. Fuhua Cheng [3] gave the result of this
type for the Bernstein operator. In this paper, using some results of
probability theory, we shall give an estimate for the rate of convergence of
(1.1) for functions of bounded variation. In the last part, we shall prove
that our estimates are essentially the best possible.

2. LEMMAS

The proof of our result is based on following lemmas.

LEMMA 1. If gd, kEN, are independent random variables with the
same distribution functions and 0 < D~k < 00, /33 = E(~r - E~Y < 00, then

where a1 = E~ 1 (expectation of ~ 1), bi = D~ 1 = E( ~ 1 - E~ 1)2 (variance of ~ 1),

and 1/~~c<0.82 (see [4, p. 159]).

LEMMA 2. If g i} (i = 1, 2, ... ) are independent random variables with the
same geometric distribution

0< x < 1, i = 1, 2, ...,

then

x
E~i=-1-,-x

and YIn = L7~ 1 ~i is a random variable with distribution

(2.2)

(see [4, p. 132, Ex. 46, p. 133, Ex. 55, and pp. 303, 306]).
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LEMMA 3. For every x E (0, 1), we have

247

I L (n+k-l)Xk(l_xt_~1~16X-3/2. (2.3)
Ik/(n+kl>x k 2 ~

Proof By Lemma 2, we have

Using Lemma 1 with ai = x/(1 - x), b i = Jx/(1- X)2, we have

!

p(11n- nx/(I-X»o) __I_ roo e-t2/2dt!< [33 (2.5)
~/(I-x) $Jo ~(.fi/(1-X))3'

where

I

X 1

3

oo! X 1

3

f33=E ~k--- = L k--- xk(l-x)
I-x k=O I-x

~ f (k3+ 3k2_x_+ 3k (_X_\)
2
+(-IX)3) xk(1-x).

k~O I-x I-x -x

By an easy calculation we can show that

00

L x k (1- x) = 1,
k=O

~ e k( 1 _ ) = x( 1+ x)
k7:o x x (l-x)2'

Hence

x
3
+4x

2
+x 3x x(l+x) (X)3 (X)3 16

f33~ 3 +--. 2 +3 -- + -- ~ 3'
(I-x) I-x (I-x) I-x I-x (I-x)

On the other hand

1 fCC - ,2/2 d _ 1-- e t--.$0 2
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By (2.5) and (2.6), it follows that

I L (n+k-1)Xk(l_xt_~I~_1 16 3/(~)3.
k/(n+k»x k 2 j;z (I-x) I-x

Inequality (2.3) is proved.

LEMMA 4. For every kEN, x E (0, 1), we have

Proof By (2.2), we have

(
n+k-1)k xk(1-xt=P(Yfn=k)=P(k-1<Yfn~k)

= P (k -1- nx/(l- x) < '1n - nx/(l- x)

~/(1-x) ~/(1-x)

k-nX/(l-X))
~ C .

ynx/(l-x)

Using the method of proof of Lemma 3, we can show that

I
1 fk-nx/(l-XVvr.;:;/(l-X) 2 I 32

P(Yf n = k) - -- e - t /2 dt ~ .J2;, k-l-nx/(l-xVvr.;:;/(l-x) j;zX3/2

(2.6)

But the absolute value of the second term on the left-hand side of the last
inequality is less than (1-x)/J2nnx; hence

Lemma 4 is proved.

LEMMA 5. For x E (0, 1), n E N, we have

A 2 x(l-x)2 (1)
Mn{{t-x) ,x)= n +ox ~ . (2.7)
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Proof First

Mn ((t-x)2,x)=(n+l)(1-xt f (n+kk+I)xkr (t-X)2 dt
k~O Jik

=(l-xtk~oC+~-l)xk'~[C:;~l xy

+C:;: I-x)(n:k -x) +(n:k -xYJ
=(1-xt f (n+k-l)xk[~( k+l __k_Y

k=O k 3 n+k+l n+k;

249

+(n:;:l-X)C:k -x)J

= (1 -xt k~0 (n + ~ - 1) xk
[ ~ ( (n + k +~ )(n+ k)) 2

+C:;:l-n:k)C:k -x)+C:k-xYl

Using [5, (5.9.2}-(5.9.7)J, we obtain

00 (n+k-l) l( n )2 (1)
(1- xt k~0 k x

k
'"3 (n + k+ 1)(n+ k) = 0 x ~ ,

(l-xt f (n +k-l) xk (_k__ X)2 = x(l-x)2 - Ox (~),
k=O k n+k n-I n

1 n 00 (n +k- 1) k( k+1 k)( k )
( -x) k~O k x n+k+I n+k n+k- x

_ 1 _ xn 00 (n + k - 1) xk [ 1 k _ 1
-( ) k~O k n+k+ln+k n+k+l

x(_k)2 _ x + x _kJ-o (~\)
n+k n+k+1 n+k+ln+k - x n'

Consequently (2.7) is proved.

LEMMA 6. If n is sufficiently large, x E (0, 1), then:

(1) For O~y<x, we have

f
y 2x(1-x)2

Hn(x, t) dt ~ ( )2 .
o n x- y

(2.8 )
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(2) For x<z~ 1, we have

f
l 2X(1-X)2

Hn(x, t) dt ~ ( )2 .
z nz-x

(2.9)

Proof First, by (2.7), for n sufficiently large, we have

x(1-x)2 MA (( )2) 2x(1-x)2
2

~ n t-x ,x ~ .
n n

If °~ y < x, t E [0, y], then

x-t
--;:, 1.
x-y

By (2.10), for n sufficiently large, we have

f
y fY(X-t)2Hn(x, t) dt ~ -- Hn(x, t) dt
o 0 x- Y

1 fl~( f (x-t)2Hn(xt)dt
x-y 0

1 A 2 2x(1-x)2

( )
2 Mn((t-x) ,X) ~ ( )2'x-y nx-y

Inequality (2.8) is proved. The proof of (2.9) is similar.

LEMMA 7. For n ;:, 2, °~ x ~ 1, and m;:' 1, we have

where Am is independent ofn and x (see [1, (2.1)]).

3. MAIN THEOREM

(2.10)

(2.11 )

THEOREM. Let f be a function of bounded variation on [0, 1] and let
V~(gx) be the total variation ofg x on [a, b]. Then, for every x E (0, 1) and n
sufficiently large, we have

IAInU; x) - Hf(x + )+ f(x - ))1

5 n x+(I-x)/"fi 49
~- L V (gx)+--3i1f(x+)-f(x-)I, (3.1)
nXk~1 x-x/"fi j;zx/
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f(t)- f(x+),

gAt) = 0,

f(t)- f(x-),

x<t:(l;

t=x;

0:( t < x.

Proof First

IMnCf, x) - !(f(x + )+ f(x - ))1

:( IMn(gx, x) + !If(x + )- f(x - )1 IMn(sign(t - x), x)l. (3.2)

This shows that to estimate IMn(f, x) - !(f(x + )+ f(x - ))1 we only have
to evaluate Mn(gx' x) and Mn(sign(t-x), x).

We first estimate Mn(sign(t - x), x). If k'j(n + k') :( x < (k' + 1)1
(n + k' + 1), then

Mn(sign(t-x), x)

L Mnk(x) - L Mnk(x)
k!(n+k»x (k+ 1)!(n+k+ 1)<x

[
,(k'+I)!(n+k'+I) rx ] ~

+(n+l) j dt- dt Mnk·(x)
x Jk'!(n+k')

~f An(x) - Bn(x) + Cn(x),

where Mnk(x) = (n+%-l) xk(l - xt. By Lemma 3, we have

IAn(x) -~I :( ~:3/2'
But ICn(x)1 :( Mnk,(x), so by Lemma 4, we have

Since Bn(x) = I-An(x) - Mnk,(x)l, we have

IBn(x) -~I :( IAn(x) -~I + Mnk,(x):( ~:3!2'

Consequently

~ 98
IMn(sign(t-x), x)l:( r= .

v n X 3!2
(3.3 )
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To estimate Mn(gx, x), we decompose [0,1] into

A [ I-x ]
13 = x+ j;t' 1 .

Using (1.2), we have

Mn(gx, x) = ( gAt) Hn(x, t) dt

=(r + r +r) gAt) Hn(x, t)dt
It 12 IJ

~r ,1 1,n(f, x) + ,12,n(f, x) + ,1 3,n(f, x).

LetAn(x, t) = $& Hn(x, u) duo
First, we evaluate ,12 n(f, x). For t E 12 , we have

x+ (l-xvfi
IgAt)I=lgx(t)-gAx)l~ V (gJ

x-x/~

and so
x+(I-x)/fi x+(l-x)/fi

1,1 2.n(f, x)1 ~ V (gx) r Hn(x, t) dt~ V (gx)' (3.4)
x-x/fi 12 x-x/~

Since the evaluation of ,11 n(f, x) is similar to work in [3], we shall
omit some details. Let y = ~ - x/j;t. Using partial Lebesgue-Stieltjes
integration, we find that

1,1 1,n(f, x)1 = If: gAt) d,An(X, t)1

=/gAY+ )An(x, y)- J: An(X, t)d,gAt)1

~ V(gx)An(x, y) +rAn(X, t) d, (-V(gJ).
y+ 0 ,

By (2.8), we have

x 2x(1 - X)2 2x( 1 - X)2 fY 1 (X )
1,1 1,n(f, x)1 ~X(gJ n(x _ y)2 + n 0 (x _ t)2 d, - Y(gJ .

Furthermore, since
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we have

2x(l- X)2 (V~(gJ Ix-xI';;; x dt)
1L11,nCf,x)l~ n ---;r-+2

0
y(gJ(X_t)3 .

Replacing the variable t in the last integral by x - xlJr, we find that

253

Hence

Using a similar method and (2.9), we obtain

From (3.4)-(3.6) it follows that

The theorem now follows from (3.3) and (3,7).

4. REMARK

(3.6)

(3.7)

We shall prove that our estimate is essentially the best possible. Consider
the functionf(t) = It-xl (O<x<l) on [0,1]. By (2.10), for any small b
and n sufficiently large, we have

(4.1 )



254

and
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=~ [f -f ] (t-X)2 Hn(x, t) dt
u 0 It-xl >6

x(l-x)2 If 2
?' 2 b ~ (t-x) Hn(x,t)dt.

n u It~xl >6

Using (2.11), we have

where A 2 is a constant. Hence

Choosing b = 2 JA 2/nx( 1- x )2, we obtain from (4.1) and (4.2) that

On the other hand, from (3.1), since V~:t:p (f) = rt. + /3, it follows that

(4.2)

(4.3 )

Hence, by comparing (4.3) and (4.4), we see that (3.1) cannot be
asymptotically improved for a function of bounded variation.

Finally, we mention that, using the method of this paper, we can obtain
other, similar results on Meyer-Konig and Zeller operators.
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